3.414 \(\int \frac{x^2 (c+d x^3)^{3/2}}{(8 c-d x^3)^2} \, dx\)

Optimal. Leaf size=77 \[ \frac{\left (c+d x^3\right )^{3/2}}{3 d \left (8 c-d x^3\right )}+\frac{\sqrt{c+d x^3}}{d}-\frac{3 \sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{3 \sqrt{c}}\right )}{d} \]

[Out]

Sqrt[c + d*x^3]/d + (c + d*x^3)^(3/2)/(3*d*(8*c - d*x^3)) - (3*Sqrt[c]*ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])])/d

________________________________________________________________________________________

Rubi [A]  time = 0.0600984, antiderivative size = 77, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.185, Rules used = {444, 47, 50, 63, 206} \[ \frac{\left (c+d x^3\right )^{3/2}}{3 d \left (8 c-d x^3\right )}+\frac{\sqrt{c+d x^3}}{d}-\frac{3 \sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{3 \sqrt{c}}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[(x^2*(c + d*x^3)^(3/2))/(8*c - d*x^3)^2,x]

[Out]

Sqrt[c + d*x^3]/d + (c + d*x^3)^(3/2)/(3*d*(8*c - d*x^3)) - (3*Sqrt[c]*ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])])/d

Rule 444

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && EqQ[m
- n + 1, 0]

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + 1)), x] - Dist[(d*n)/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x^2 \left (c+d x^3\right )^{3/2}}{\left (8 c-d x^3\right )^2} \, dx &=\frac{1}{3} \operatorname{Subst}\left (\int \frac{(c+d x)^{3/2}}{(8 c-d x)^2} \, dx,x,x^3\right )\\ &=\frac{\left (c+d x^3\right )^{3/2}}{3 d \left (8 c-d x^3\right )}-\frac{1}{2} \operatorname{Subst}\left (\int \frac{\sqrt{c+d x}}{8 c-d x} \, dx,x,x^3\right )\\ &=\frac{\sqrt{c+d x^3}}{d}+\frac{\left (c+d x^3\right )^{3/2}}{3 d \left (8 c-d x^3\right )}-\frac{1}{2} (9 c) \operatorname{Subst}\left (\int \frac{1}{(8 c-d x) \sqrt{c+d x}} \, dx,x,x^3\right )\\ &=\frac{\sqrt{c+d x^3}}{d}+\frac{\left (c+d x^3\right )^{3/2}}{3 d \left (8 c-d x^3\right )}-\frac{(9 c) \operatorname{Subst}\left (\int \frac{1}{9 c-x^2} \, dx,x,\sqrt{c+d x^3}\right )}{d}\\ &=\frac{\sqrt{c+d x^3}}{d}+\frac{\left (c+d x^3\right )^{3/2}}{3 d \left (8 c-d x^3\right )}-\frac{3 \sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{3 \sqrt{c}}\right )}{d}\\ \end{align*}

Mathematica [C]  time = 0.0148847, size = 43, normalized size = 0.56 \[ \frac{2 \left (c+d x^3\right )^{5/2} \, _2F_1\left (2,\frac{5}{2};\frac{7}{2};\frac{d x^3+c}{9 c}\right )}{1215 c^2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(x^2*(c + d*x^3)^(3/2))/(8*c - d*x^3)^2,x]

[Out]

(2*(c + d*x^3)^(5/2)*Hypergeometric2F1[2, 5/2, 7/2, (c + d*x^3)/(9*c)])/(1215*c^2*d)

________________________________________________________________________________________

Maple [C]  time = 0.007, size = 451, normalized size = 5.9 \begin{align*} -3\,{\frac{c\sqrt{d{x}^{3}+c}}{d \left ( d{x}^{3}-8\,c \right ) }}+{\frac{2}{3\,d}\sqrt{d{x}^{3}+c}}+{\frac{{\frac{i}{2}}\sqrt{2}}{{d}^{3}}\sum _{{\it \_alpha}={\it RootOf} \left ({{\it \_Z}}^{3}d-8\,c \right ) }{\sqrt [3]{-{d}^{2}c}\sqrt{{{\frac{i}{2}}d \left ( 2\,x+{\frac{1}{d} \left ( -i\sqrt{3}\sqrt [3]{-{d}^{2}c}+\sqrt [3]{-{d}^{2}c} \right ) } \right ){\frac{1}{\sqrt [3]{-{d}^{2}c}}}}}\sqrt{{d \left ( x-{\frac{1}{d}\sqrt [3]{-{d}^{2}c}} \right ) \left ( -3\,\sqrt [3]{-{d}^{2}c}+i\sqrt{3}\sqrt [3]{-{d}^{2}c} \right ) ^{-1}}}\sqrt{{-{\frac{i}{2}}d \left ( 2\,x+{\frac{1}{d} \left ( i\sqrt{3}\sqrt [3]{-{d}^{2}c}+\sqrt [3]{-{d}^{2}c} \right ) } \right ){\frac{1}{\sqrt [3]{-{d}^{2}c}}}}} \left ( i\sqrt [3]{-{d}^{2}c}{\it \_alpha}\,\sqrt{3}d-i\sqrt{3} \left ( -{d}^{2}c \right ) ^{{\frac{2}{3}}}+2\,{{\it \_alpha}}^{2}{d}^{2}-\sqrt [3]{-{d}^{2}c}{\it \_alpha}\,d- \left ( -{d}^{2}c \right ) ^{{\frac{2}{3}}} \right ){\it EllipticPi} \left ({\frac{\sqrt{3}}{3}\sqrt{{i\sqrt{3}d \left ( x+{\frac{1}{2\,d}\sqrt [3]{-{d}^{2}c}}-{\frac{{\frac{i}{2}}\sqrt{3}}{d}\sqrt [3]{-{d}^{2}c}} \right ){\frac{1}{\sqrt [3]{-{d}^{2}c}}}}}},-{\frac{1}{18\,cd} \left ( 2\,i\sqrt [3]{-{d}^{2}c}\sqrt{3}{{\it \_alpha}}^{2}d-i \left ( -{d}^{2}c \right ) ^{{\frac{2}{3}}}\sqrt{3}{\it \_alpha}+i\sqrt{3}cd-3\, \left ( -{d}^{2}c \right ) ^{2/3}{\it \_alpha}-3\,cd \right ) },\sqrt{{\frac{i\sqrt{3}}{d}\sqrt [3]{-{d}^{2}c} \left ( -{\frac{3}{2\,d}\sqrt [3]{-{d}^{2}c}}+{\frac{{\frac{i}{2}}\sqrt{3}}{d}\sqrt [3]{-{d}^{2}c}} \right ) ^{-1}}} \right ){\frac{1}{\sqrt{d{x}^{3}+c}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(d*x^3+c)^(3/2)/(-d*x^3+8*c)^2,x)

[Out]

-3/d*c*(d*x^3+c)^(1/2)/(d*x^3-8*c)+2/3*(d*x^3+c)^(1/2)/d+1/2*I/d^3*2^(1/2)*sum((-d^2*c)^(1/3)*(1/2*I*d*(2*x+1/
d*(-I*3^(1/2)*(-d^2*c)^(1/3)+(-d^2*c)^(1/3)))/(-d^2*c)^(1/3))^(1/2)*(d*(x-1/d*(-d^2*c)^(1/3))/(-3*(-d^2*c)^(1/
3)+I*3^(1/2)*(-d^2*c)^(1/3)))^(1/2)*(-1/2*I*d*(2*x+1/d*(I*3^(1/2)*(-d^2*c)^(1/3)+(-d^2*c)^(1/3)))/(-d^2*c)^(1/
3))^(1/2)/(d*x^3+c)^(1/2)*(I*(-d^2*c)^(1/3)*_alpha*3^(1/2)*d-I*3^(1/2)*(-d^2*c)^(2/3)+2*_alpha^2*d^2-(-d^2*c)^
(1/3)*_alpha*d-(-d^2*c)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2/d*(-d^2*c)^(1/3)-1/2*I*3^(1/2)/d*(-d^2*c)^(1/3
))*3^(1/2)*d/(-d^2*c)^(1/3))^(1/2),-1/18/d*(2*I*(-d^2*c)^(1/3)*3^(1/2)*_alpha^2*d-I*(-d^2*c)^(2/3)*3^(1/2)*_al
pha+I*3^(1/2)*c*d-3*(-d^2*c)^(2/3)*_alpha-3*c*d)/c,(I*3^(1/2)/d*(-d^2*c)^(1/3)/(-3/2/d*(-d^2*c)^(1/3)+1/2*I*3^
(1/2)/d*(-d^2*c)^(1/3)))^(1/2)),_alpha=RootOf(_Z^3*d-8*c))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(d*x^3+c)^(3/2)/(-d*x^3+8*c)^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.72932, size = 373, normalized size = 4.84 \begin{align*} \left [\frac{9 \,{\left (d x^{3} - 8 \, c\right )} \sqrt{c} \log \left (\frac{d x^{3} - 6 \, \sqrt{d x^{3} + c} \sqrt{c} + 10 \, c}{d x^{3} - 8 \, c}\right ) + 2 \,{\left (2 \, d x^{3} - 25 \, c\right )} \sqrt{d x^{3} + c}}{6 \,{\left (d^{2} x^{3} - 8 \, c d\right )}}, \frac{9 \,{\left (d x^{3} - 8 \, c\right )} \sqrt{-c} \arctan \left (\frac{\sqrt{d x^{3} + c} \sqrt{-c}}{3 \, c}\right ) +{\left (2 \, d x^{3} - 25 \, c\right )} \sqrt{d x^{3} + c}}{3 \,{\left (d^{2} x^{3} - 8 \, c d\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(d*x^3+c)^(3/2)/(-d*x^3+8*c)^2,x, algorithm="fricas")

[Out]

[1/6*(9*(d*x^3 - 8*c)*sqrt(c)*log((d*x^3 - 6*sqrt(d*x^3 + c)*sqrt(c) + 10*c)/(d*x^3 - 8*c)) + 2*(2*d*x^3 - 25*
c)*sqrt(d*x^3 + c))/(d^2*x^3 - 8*c*d), 1/3*(9*(d*x^3 - 8*c)*sqrt(-c)*arctan(1/3*sqrt(d*x^3 + c)*sqrt(-c)/c) +
(2*d*x^3 - 25*c)*sqrt(d*x^3 + c))/(d^2*x^3 - 8*c*d)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(d*x**3+c)**(3/2)/(-d*x**3+8*c)**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.09158, size = 93, normalized size = 1.21 \begin{align*} \frac{3 \, c \arctan \left (\frac{\sqrt{d x^{3} + c}}{3 \, \sqrt{-c}}\right )}{\sqrt{-c} d} + \frac{2 \, \sqrt{d x^{3} + c}}{3 \, d} - \frac{3 \, \sqrt{d x^{3} + c} c}{{\left (d x^{3} - 8 \, c\right )} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(d*x^3+c)^(3/2)/(-d*x^3+8*c)^2,x, algorithm="giac")

[Out]

3*c*arctan(1/3*sqrt(d*x^3 + c)/sqrt(-c))/(sqrt(-c)*d) + 2/3*sqrt(d*x^3 + c)/d - 3*sqrt(d*x^3 + c)*c/((d*x^3 -
8*c)*d)